Beyond the Tip of the Iceberg: Strategies to Ensure Optimal HBV Screening, Diagnosis, and Initial Therapy

Sunday, November 1, 2009
Back Bay Ballroom
Sheraton Boston Hotel
Boston, Massachusetts

This program is supported by an educational grant from GILEAD

Advancing Therapeutics. Improving Lives.
Program Faculty

Chair
Norah Terrault, MD, MPH
Associate Professor of Medicine
Director, Viral Hepatitis Center
Department of Medicine, Division of Gastroenterology
University of California, San Francisco
San Francisco, California

Faculty
W. Ray Kim, MD
Associate Professor of Medicine
Division of Gastroenterology and Hepatology
Mayo Clinic
Rochester, Minnesota

Jules L. Dienstag, MD
Carl W. Walter Professor of Medicine
Dean for Medical Education
Harvard Medical School
Physician, Gastrointestinal Unit
Massachusetts General Hospital
Boston, Massachusetts

Albert D. Min, MD
Director of Hepatitis Research
Professor of Clinical Medicine
Division of Digestive Diseases
Beth Israel Medical Center
New York, New York
About These Slides

- Our thanks to the presenters who gave permission to include their original data
- Users are encouraged to use these slides in their own noncommercial presentations, but we ask that content and attribution not be changed. Users are asked to honor this intent
- These slides may not be published or posted online without permission from Clinical Care Options

Disclaimer
The materials published on the Clinical Care Options Web site reflect the views of the authors of the CCO material, not those of Clinical Care Options, LLC, the CME providers, or the companies providing educational grants. The materials may discuss uses and dosages for therapeutic products that have not been approved by the United States Food and Drug Administration. A qualified healthcare professional should be consulted before using any therapeutic product discussed. Readers should verify all information and data before treating patients or using any therapies described in these materials.
Burden of Chronic HBV Disease

- ~ 400 million people worldwide living with chronic HBV infection
 - Yearly, ~ 500,000 people die of HBV-related cirrhosis and HCC
 - > 1 million US residents have chronic HBV infection
 - Up to two thirds are unaware of their infection
 - Less than one half of patients with known HBV infection referred to specialist for evaluation

To reduce disease complications, need to
- Identify infected individuals
- Assess disease status and need for treatment and other monitoring
- Optimize treatment outcomes: issues of who, when, and how to treat

3. CDC. MMWR. 2007;56:446-448.
HBV Screening and Diagnosis: Are Current Practices Effective at Identifying Patients at Risk and Evaluating Patients for HBV Treatment?

W. Ray Kim, MD
Associate Professor of Medicine
Division of Gastroenterology and Hepatology
Mayo Clinic
Rochester, Minnesota
2008 CDC Guidelines for HBV Screening: New Recommendations

- Persons born in countries with ≥ 2% HBsAg prevalence
- US-born persons not vaccinated as infants whose parents were born in regions with high HBV endemicity (≥ 8% HBsAg prevalence)
- Persons with behavioral exposures to HBV
 - Injection drug users, MSM
- Persons needing immunosuppressive therapy
 - Chemotherapy, organ transplantation, immunosuppression for rheumatologic or gastroenterologic disorders
- Persons with elevated ALT/AST of unknown etiology

http://www.cdc.gov/mmwr/preview/mmwrhtml/rr5708a1.htm
Global Distribution of HBV

Prevalence of HBsAg
- High ≥ 8%
- Intermediate 2% to 7%
- Low < 2%

Centers for Disease Control and Prevention. CDC Health Information for International Travel 2010.
New HBV Cases Diagnosed in Olmsted County, Minnesota: 1994-2000

Noninvasive Assessment of Fibrosis

- No large-scale validation specific to hepatitis B patients
- Elastography data (n = 173)
 - Liver stiffness measure able to detect significant cirrhosis and fibrosis
 - Correlation with METAVIR and Ishak scoring systems demonstrated ($P < .001$)
 - Optimal cutoff for cirrhosis: 11.0 kPa
 - Sensitivity: 93%
 - Specificity: 87%

Liver Stiffness in Acute Hepatitis

- Acute hepatitis without obvious evidence of chronic liver disease
- 18 total patients; 8 with HBV infection

Serum Markers of Fibrosis in Hepatitis B

FibroTest

AUROC: *FibroTest* = 0.78

APRI vs LSM

AUROC: LSM = 0.84, APRI = 0.78

HCC Surveillance: AASLD Practice Guideline Recommendations

- **Hepatitis B**
 - Cirrhosis regardless of age
 - Asian males 40 yrs of age or older
 - Asian females 50 yrs of age or older
 - HCC in first-degree relative (start before 40 yrs of age)
 - African older than 20 yrs of age

- **Cirrhosis from other causes**

Risk of HCC According to Baseline Factors

REVEAL: long-term follow-up (mean, 11.4 yrs) of untreated HBsAg positive individuals in Taiwan (N = 3653)

Surveillance Interval

- Optimal interval not known
- Randomized trial: decreased mortality based on 6-mo surveillance intervals (vs no screening)\(^1\)
- Retrospective data: equivalence between 6- and 12-mo intervals\(^2\)

Take Home Points

- HBV screening in the target population highly justified
 - Data indicate correlation between HBV DNA and long-term outcome
 - Antiviral therapy able to alter natural history

- Target population
 - Patients from areas with projected prevalence 2% or higher including unvaccinated US born children of immigrants from endemic areas

- Other groups
 - Immunosuppressive therapy
 - Abnormal aminotransferases
Take Home Points (cont’d)

Emerging data on noninvasive markers of fibrosis in HBV
- LSM probably more accurate than existing serum panel
- Acute flare may lead to false elevations of LSM

Cirrhosis is by far the largest risk factor for HCC

Correlation between HBV DNA and HCC risk well known
- Uncertain how that info is incorporated into surveillance strategy
After Diagnosis:
Given the Benefits of HBV Treatment, Why Do So Few Patients Initiate Therapy When Indicated?

Albert D. Min, MD
Director of Hepatitis Research
Professor of Clinical Medicine
Division of Digestive Diseases
Beth Israel Medical Center
New York, New York
Treatment Criteria for Chronic Hepatitis B

Recommended HBV DNA and ALT levels outlined in the following table

<table>
<thead>
<tr>
<th>Liver Society Guidelines*</th>
<th>HBeAg Positive</th>
<th>HBeAg Negative</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>HBV DNA, IU/mL</td>
<td>ALT</td>
</tr>
<tr>
<td>APASL 2008[2]</td>
<td>≥ 20,000</td>
<td>> 2 x ULN†</td>
</tr>
<tr>
<td>AASLD 2009[3]</td>
<td>> 20,000</td>
<td>> 2 x ULN† or (+) biopsy</td>
</tr>
</tbody>
</table>

*Although ALT and HBV DNA are primary tests used to determine treatment candidacy, the levels of elevation that warrant consideration of treatment are not universally agreed upon.

†Laboratory normal.

‡30 U/L for men and 19 U/L for women.

**In patients older than 40 yrs of age, 2000 IU/mL should be considered as a cutoff for treatment.

What Is a “Normal” ALT Level?

- 9221 first-time potential blood donors
- 74% suitable donors after exclusion of anemia, seizure, sexual, and other risk
 - 57% determined to be at “low risk” for liver disease
 - Negative viral serology
 - BMI < 25
 - Normal serum cholesterol, triglycerides, and glucose levels
 - Absence of concurrent medication use
- Updated healthy ALT ranges determined from the group of low-risk individuals
 - Males: 30 IU/L
 - Females: 19 IU/L

Beyond the Tip of the Iceberg
clinicaloptions.com/hepatitis

Patients With Normal ALT May Have Significant Fibrosis

- 1387 asymptomatic HBsAg-positive patients with ≥ 1-yr follow-up
 - 189 with persistently normal ALT (PNALT)* included in analysis (HBeAg negative: 116 / 189, 61%)
- 21% of HBeAg-negative patients with PNALT and HBV DNA < 5 log copies/mL had HAI ≥ 3 and/or fibrosis stage ≥ 2

*≥ 3 ALT values in the previous 1 yr prior to baseline liver biopsy that were all ≤ 40 IU/L and remained so until the start of treatment or the last follow-up.
Favorable Short-term Outcomes in Patients With High HBV DNA, Normal ALT

- 240 HBeAg-positive individuals (male 130, female 110); mean age: 27.6 yrs
- Mean follow-up: 10.5 yrs (range: 3-20)
- Spontaneous HBeAg seroconversion in 85% between the ages of 20 and 39 yrs
- Reactivation of hepatitis after HBeAg seroconversion in 2.2% per yr
- Progression to cirrhosis in 5.4% after 10 yrs
- HCC: none

Cumulative Risk of Liver-Related Complications in Chronic Hepatitis B

- Long-term follow-up of 3233 patients with chronic hepatitis B in Hong Kong
 - Risk of developing ascites, SBP, esophageal varices, encephalopathy, or HCC determined
 - Reference group: ALT < 0.5 x ULN
- Persons with ALT 0.5-1.0 x ULN and 1.0-2.0 x ULN had an increased risk of developing liver disease complications (P < .0001 vs reference group)

HBeAg-Negative Chronic HBV vs Inactive Carrier State

<table>
<thead>
<tr>
<th></th>
<th>HBeAg-Negative Disease</th>
<th>Inactive Carrier</th>
</tr>
</thead>
<tbody>
<tr>
<td>HBsAg positive</td>
<td>ü</td>
<td>ü</td>
</tr>
<tr>
<td>Anti-HBe positive</td>
<td>ü</td>
<td>ü</td>
</tr>
<tr>
<td>Anti-HBc positive</td>
<td>ü</td>
<td>ü</td>
</tr>
<tr>
<td>HBV DNA</td>
<td>> 2000 IU/mL*</td>
<td>< 2000 IU/mL</td>
</tr>
<tr>
<td>ALT</td>
<td>Elevated†</td>
<td>Normal</td>
</tr>
</tbody>
</table>

*Fluctuations to < 2000 IU/mL can occur.
†May be elevated either persistently or intermittently.

HBeAg-Negative Patients Require Frequent Monitoring

Disease Progression Minimal During Immune-Tolerant Phase

- 57 patients with high HBV DNA levels in immune-tolerant phase
- 48 remained in immune tolerant phase at 5-year follow-up

Persistently Elevated HBV DNA Associated With Increased HCC Risk

* Cox proportional hazards models. Risk is relative to < 10^4 copies/mL at entry/not tested at follow-up. Data adjusted for sex, age, cigarette smoking, and alcohol consumption.

Take Home Points

- ALT is an imperfect measure of liver histology
 - “Normal” levels should be lower than the current reference range
- HBeAg-negative CHB patients require frequent monitoring
 - Severity of liver disease may not be evident from occasional testing
- Short-term outcome is favorable in CHB patients in immune-tolerant phase
- Active viral replication in CHB patients is associated with long-term risk of cirrhosis and HCC
Current Options for First-line HBV Treatment

Norah Terrault, MD, MPH
Associate Professor of Medicine
Director, Viral Hepatitis Center
Department of Medicine, Division of Gastroenterology
University of California, San Francisco
San Francisco, California
Goals of Hepatitis B Treatment

- Prevention of long-term negative clinical outcomes (e.g., cirrhosis, HCC, death) by durable suppression of HBV DNA

- Primary treatment endpoint
 - Sustained decrease in serum HBV DNA level to low or undetectable

- Secondary treatment endpoints
 - Decrease or normalize serum ALT
 - Improve liver histology
 - Induce HBeAg loss or seroconversion
 - Induce HBsAg loss or seroconversion
HBV Treatment Landscape in 2009

- Interferon alfa-2b (1990)
- Lamivudine (1998)
- Entecavir (2005)
- Tenofovir (2008)
- Adefovir (2002)
- Telbivudine (2006)
- Peginterferon alfa-2a (2002)
Factors Driving Selection of Initial Therapy

Nucleos(t)ide Analogues
- Safety & tolerability
- Efficacy (potency)
- Barrier to resistance (durability)

Peginterferon
- Safety & tolerability
- Efficacy (potency)
Undetectable* HBV DNA in HBV Patients After 1 Year of Treatment

*By PCR-based assay (LLD ~ 50 IU/mL) except for some LAM studies.

HBeAg Loss and Seroconversion in HBeAg+ Patients After 1 Year of Treatment

Not head-to-head trials; different patient populations and trial designs

Cumulative Rates of Resistance With Oral Agents in Nucleos(t)ide-Naive Patients

Not head-to-head trials; different patient populations and trial designs

<table>
<thead>
<tr>
<th>Drug</th>
<th>Generation</th>
<th>Yr 1</th>
<th>Yr 2</th>
<th>Yr 3</th>
<th>Yr 4</th>
<th>Yr 5</th>
<th>Yr 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>LAM</td>
<td>1st</td>
<td>24%</td>
<td>38%</td>
<td>49%</td>
<td>67%</td>
<td>70%</td>
<td></td>
</tr>
<tr>
<td>ADV</td>
<td>2nd</td>
<td>0%</td>
<td>3%</td>
<td>11%</td>
<td>18%</td>
<td>29%</td>
<td></td>
</tr>
<tr>
<td>TBV</td>
<td></td>
<td>4%</td>
<td>17%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ETV</td>
<td>3rd</td>
<td>0.2%</td>
<td>0.5%</td>
<td>1.2%</td>
<td>1.2%</td>
<td>1.2%</td>
<td>1.2%</td>
</tr>
<tr>
<td>TDF</td>
<td></td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>1.2%</td>
<td>1.2%</td>
<td>1.2%</td>
</tr>
</tbody>
</table>

Tolerability and Safety: Nucleos(t)ide Analogues vs Peginterferon

Nucleos(t)ide Analogues
- Safe at all stages of disease, including decompensated cirrhosis
- Safe in immunocompromised populations
 - Selected drugs probably safe in pregnancy
- Reported toxicities are rare

Peginterferon
- Contraindications
 - Decompensated cirrhosis
 - Pregnancy
 - Significant cardiopulmonary disease
 - Uncontrolled seizures, psychiatric disease
 - Autoimmune diseases
- Not recommended
 - Cirrhosis
- Adverse effects common

Current Guideline Recommendations for First-line Therapy

- Peginterferon alfa-2a
 - Exceptions: pregnancy, chemotherapy prophylaxis, decompensated cirrhosis
- Entecavir
- Tenofovir

HBeAg Seroconversion Rates Over Time in HBeAg-Positive Patients

*With sustained undetectable HBV DNA.

Not head-to-head trials; different patient populations and trial designs

Extended Treatment With Nucleos(t)ide Analogues* vs Limited Duration (1 Yr) Peginterferon Treatment

<table>
<thead>
<tr>
<th>Time</th>
<th>Entecavir</th>
<th>Tenofovir</th>
<th>Peginterferon</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0 Yr</td>
<td>21</td>
<td>22</td>
<td>22-27</td>
</tr>
<tr>
<td>1.5-2.0 Yrs</td>
<td>31</td>
<td>26</td>
<td>29-32</td>
</tr>
<tr>
<td>3.0-4.0 Yrs</td>
<td>39</td>
<td>26</td>
<td>35</td>
</tr>
</tbody>
</table>
HBsAg Loss Over Time in HBeAg-Positive Patients

Not head-to-head trials; different patient populations and trial designs

Extended Treatment With Nucleos(t)ide Analogues* vs Limited Duration (1 Yr) Peginterferon Treatment

<table>
<thead>
<tr>
<th>Duration</th>
<th>Entecavir</th>
<th>Tenofovir</th>
<th>Peginterferon</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0 Yr</td>
<td>2%</td>
<td>3%</td>
<td>5%</td>
</tr>
<tr>
<td>1.5-2.0 Yrs</td>
<td>5%</td>
<td>6%</td>
<td>6%</td>
</tr>
<tr>
<td>3.0-4.0 Yrs</td>
<td>NA</td>
<td>8%</td>
<td>8%</td>
</tr>
</tbody>
</table>

*With sustained undetectable HBV DNA.

Predictors of HBsAg Loss in HBeAg-Positive Patients

- Race: whites > nonwhites[1]
- Genotype[1-3]
 - Nucleos(t)ide analogues: A and D
 - Peginterferon: A
- Decline in HBsAg level during first 24 wks with nucleos(t)ide analogues[1]
- HBeAg negative at or within 26 wks of completing peginterferon treatment[3]

Undetectable HBV DNA Over Time in HBeAg-Negative Patients

Not head-to-head trials; different patient populations and trial designs

Extended Treatment With Nucleos(t)ide Analogues vs Limited Duration (1 Yr) Peginterferon Treatment

<table>
<thead>
<tr>
<th></th>
<th>Entecavir</th>
<th>Tenofovir</th>
<th>Peginterferon</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Yr</td>
<td>90</td>
<td>93</td>
<td>87</td>
</tr>
<tr>
<td>2 Yrs</td>
<td>91</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>3 Yrs</td>
<td>100*</td>
<td>87</td>
<td>16</td>
</tr>
</tbody>
</table>

*single center study.

HBsAg Loss Over Time in HBeAg-Negative Patients

Not head-to-head trials; different patient populations and trial designs

On Extended Treatment With Nucleos(t)ide Analogues* vs Limited Duration (1 yr) Peginterferon Treatment

- Entecavir
- Tenofovir
- Peginterferon

*With sustained undetectable HBV DNA.

Wk 12 HBsAg Levels Predict Outcomes in HBeAg-negative Patients

- 48 patients consecutively treated with pegIFN alfa-2a for 48 weeks
- SVR defined as undetectable serum HBV DNA (< 70 copies/mL) 24 weeks after treatment cessation
- Change in HBsAg level from baseline to Week 12 evaluated as predictor of SVR
 - Cutoff of $0.5 \log_{10}$ IU/mL used
 - PPV = 89% – NPV = 90%

<table>
<thead>
<tr>
<th>Outcome, % (n)</th>
<th>Change in HBsAg from Baseline to Week 12</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$\geq 0.5 \log_{10}$ IU/mL (n = 9)</td>
</tr>
<tr>
<td>SVR</td>
<td>89 (8)</td>
</tr>
<tr>
<td>No SVR</td>
<td>11 (1)</td>
</tr>
<tr>
<td></td>
<td>$< 0.5 \log_{10}$ IU/mL (n = 39)</td>
</tr>
<tr>
<td></td>
<td>10 (4)</td>
</tr>
<tr>
<td></td>
<td>90 (35)</td>
</tr>
</tbody>
</table>

Summary of Therapy for CHB in Treatment-Naive Patients

- Tenofovir, entecavir, and peginterferon are preferred first-line drugs
 - First decision is between NAs vs peginterferon
 - 3rd generation NAs have high efficacy, very low rates of resistance, and excellent safety record
 - Peginterferon offers finite therapy, some evidence of off-treatment benefits

- HBeAg seroconversion
 - Increases over time with NAs
 - Approximately same after 3 yrs continuous treatment with NAs vs 1 yr of peginterferon

- HBsAg loss
 - Infrequent and increases slowly (< 10% at 3-4 yrs)
 - Rare in HBeAg-negative CHB with NAs
 - After 3-4 yrs follow-up, somewhat higher with peginterferon than NAs
Tip of the Iceberg:
Is Determining “How to Treat” a Barrier to Initiating HBV Therapy?

Jules L. Dienstag, MD
Carl W. Walter Professor of Medicine
Dean for Medical Education
Harvard Medical School
Physician, Gastrointestinal Unit
Massachusetts General Hospital
Boston, Massachusetts
The First Branch Point in Choosing Treatment for Hepatitis B

Decision to treat

PegIFN

Nucleos(t)ide analogues
Nucleos(t)ide Analogues vs PegIFN

- Use of pegIFN in younger patients
 - Very small proportion will benefit
 - Most will require longer treatment with nucleos(t)ide analogues
- PegIFN better in genotype A > B > C > D
 - Favorable genotypes growing vanishingly rare
 - This relationship between genotype and response seen for pegIFN alfa-2b but not with pegIFN alfa-2a
 - HBeAg seroconversion with pegIFN alfa-2a according to genotype
 - A: 52%; B: 30%; C: 31%; D: 22% (not significant)
- Predictors of HBeAg response same for pegIFN and nucleos(t)ide analogues (eg, high ALT, low HBV DNA)

Long-term Outcomes With pegIFN alfa-2a in HBeAg-Negative Chronic Hepatitis B

5 yrs posttreatment follow-up in patients treated with pegIFN ± LAM vs LAM alone for 48 wks

Outcomes With PegIFN ± LAM (n = 230 [65%] of original 356)

*vs 3.5% for LAM alone at Yr 5 (P = .022).

HBV DNA During Follow-up After Stopping Adefovir

- Patients receiving 4-5 years continuous adefovir followed long-term off treatment
 - 33 patients who had sustained undetectable HBV DNA on treatment followed
 - HBV DNA levels followed in 18 off-treatment sustained biochemical responders
- All patients initially rebounded to detectable HBV DNA
- Proportion of patients with HBV DNA < 1000 copies/mL
 - 1 month after adefovir discontinuation: 5.6%
 - 12 months after adefovir discontinuation: 55.6%
 - 48 months after adefovir discontinuation: 66.7%

HBsAg Loss Off Treatment After 4-5 Years of Continuous Adefovir

“Undesirable” Virologic Responses to Oral Therapy

Change in HBV DNA (log_{10} IU/mL)

-4.0 -3.0 -2.0 -1.0 0

0 6 12 18 Mo

Primary nonresponse
Suboptimal response
Nadir
Virologic breakthrough
1 log

Antiviral Drug

Does the Roadmap Concept Apply to ETV or TDF During First Yr?

- 1.2% resistance to ETV at 6 yrs in nucleos(t)ide-naive patients\(^1\)
- No resistance to TDF seen to date through 3 yrs in HBeAg-negative patients and 2 yrs in HBeAg-positive patients\(^2,3\)
 - Patients with positive HBV DNA at 24 and 48 wks often negative subsequently
- Tentative conclusion: for patients with positive HBV DNA at 48 wks on ETV or TDF, it may still be appropriate to continue monotherapy—especially if HBV DNA is still declining
- More data needed

Take Home Points

- For pegIFN: finite treatment for 48 wks
 - Some consider in young, noncirrhotic patients with low HBV DNA, high ALT, favorable genotypes

- For nucleos(t)ide analogues
 - Select entecavir or tenofovir in most cases
 - HBeAg-positive chronic hepatitis B: treat until HBeAg seroconversion, stop after consolidation period
 - HBeAg-negative chronic hepatitis B: treat indefinitely
Take Home Points (cont’d)

- In the case of incomplete response to entecavir or tenofovir
 - Distinguish between noncompliance, breakthrough resistance, and suboptimal response
 - “Roadmap” approach does not apply well
 - Suboptimal response: approach remains to be defined
Go Online for More From this Program!

Downloadable Slides for use in your own noncommercial presentations

Downloadable Worksheet: quick reference guide for HBV screening and evaluation available in English or simplified Chinese

clinicaloptions.com/HBViceberg